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The work of the previous paper is applied to the study of weakly interacting 
systems. Either by "quasilinear" techniques or by analyzing the perturbation 
series for the smoothed probability density, it is possible to derive a master 
equation equivalent to that of Brout and Prigogine without requiring the 
size of the system to become infinite. The properties of this equation are 
discussed. The equation is self-consistent provided the interactions are weak 
enough; however, examination of higher terms in the perturbation series 
shows that their effect might make the master equation invalid for times 
longer than that taken by a typical particle to cross the containing vessel. 
In many physical cases, the relaxation time will be shorter than this; also, 
further studies may show the higher terms to be less important than they 
seem. 

KEY W O R D S :  Coarse-grained probability density; smoothed probability 
density; avoidance of infinite system limit; weak-interaction master equation; 
diagram techniques; nonequilibrium statistical mechanics; kinetic theory. 

1. I N T R O D U C T I O N  

In  a previous paper  (Myerscough, m hereafter referred to as I), we showed 

how the use of  a certain smoothed probabi l i ty  density allows us to discuss 

some simple results of  statistical mechanics for a finite system. In  this paper, 
we treat  the extremely impor tan t  p roblem of a finite, weakly interacting 
system, showing how a master  equat ion similar to that  first derived by Brout  
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and Prigogine (") may be derived by either of the methods commonly used. 
We shall also investigate the validity of the approximations made in this 
derivation, and show that we require the condition (I.52) to be true. 

Thus we consider systems satisfying periodic conditions as set out in 
Section 3 of I and such that the interparticle interaction V of (I.25) is small, 
but nonzero. 

By V(xl, x2) being small, we mean that its average value is very much 
smaller than a typical particle kinetic energy. We write 

H(X) =- dl(X), V(x1, x2) = r x2) (1) 

etc.,where 

V(Xl, x2) ~/)02/2 (2) 

v0 being a typical particle speed, and E ~ 1. From (I.25), 

H(X) ~ � 89  1)EVo2/2 = r where e' = ( N -  1)E (3) 

z' gives the order of magnitude of the ratio of potential to kinetic energy 
in the system. If  N is large, e ' ~  NE. 

Equation 0.38) gives coupled equations for the spatial Fourier com- 
ponents of ~: 

~tK (V, t) @ V~K -t- Y'~ F_K' @x iK" i~rZK �9 ~ g + ~  �9 = "~/OK+K" 0 
K" 

(4) 
with initial conditions fSK(V, 0) given. K runs through all lattice vectors. Then, 

co 
flK(V' /) = E EP nK(V' t) (5) 

n=0 

where 

n > ~ l ,  

~- @OK = 0  VPOK~t ( V , t ) + i K . V ~ o K + i e 2 K  �9 ~V 

etSnx (V, t) + iK" V~x  -t- icr2K �9 ~ + ~ F-K' " ~V 
~t K, 

~oK(V, o) = ~,(v,  o) 

(6) 

= 0  

(7) 

(8) 

n ~> 1, tS~K(V, 0) = 0 (9) 

If  all the tS~K were bounded in time, the sum (5) would remain arbitrarily 
near tSOK, which is the solution of the interactionless problem, as t --> 4-oo 
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for  small enough e. Since this does not  occur, at  least some of  the/5,~ mus t  
increase indefinitely in m a g n i t u d e - - t h e  series (5) contains secular terms and 
we cannot  approximate / sx  by the sum of  the first few. 

2. Q U A S I L I N E A R  T H E O R Y ;  A MASTER E Q U A T I O N  

First we shall s tudy the weak-interact ion case by adapt ing the me thod  
of  Nakajima/3~ Zwanzig/4,~ M o n t r o l l / ~  and Sandri. ~7~ A t ime-independent  
solution of  (4) will be such that,  for  K =/= 0, 

/sx(V)//so(V) = 0(~) (10) 

We assume that  if  at  t ime zero this is true, the evolut ion of/5 and fix is such 
that  it remains so. We shall see later that  this assumpt ion  is self-consistent. 

With  K = 0, (4) gives (exactly) 

[O/So(V, t)/Ot] + ~ F-x" Opx(V, t ) /SV = 0 (11) 
x 

Since F0 = 0, this means  that  ?/5o/Ot is o f  order  E2;/50 will change very slowly 
indeed. For  K # 0, to first order in e only, 

[@x(V, t)/?tl + iK �9 V/5 x + ig2K �9 (~tS~/#V) + Fx " [~/50(V, t)/~V] ~ 0 (12) 

As before, we are given the value of  each tSx at  t = 0. 
Exactly as (I.79), the solution of  (12) is 

/sx(V, t) ~ /SK(V - -  iK~r~t, 0) exp ( - - iK  �9 Vt - -  l~r2K2t2) 

- -  (~ dr[exp(- - iK " V - �89 FK " (8/8V) fio(V - iK~2r, t - ~') 
d o (13) 

We now assume that  at all times, /5o(V, t) varies slowly on scale cr. Tha t  is 
[cf. (I.41)], 

e/t~(t) ~ 1, where 140 ~ [1//50(V, t)]] e/so(V, t ) / eV l  (14) 

We shall show later that  this assumpt ion  also is self-consistent. Assuming 
that/SK(V, 0) satisfies (I.41), we can say that  once a positive t ime greater  than  
(~rK) -1 has elapsed, for  K # 0, 

fix(V, t) = - - J o  d~-[exp(--iK" V~- - -  �89 

• F x ' (e/SV)/50(V - -  iKcr%-, t - -  ~') (15) 

I f  we wanted to consider negative t i m e s - - t o  follow the system b a c k w a r d - - w e  
would have to replace oo by - -  oe in (14). 
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We shall consider this expression for /~K in more detail in the next 
section. Here, we are interested in the evolution of /5o: For this, we 
substitute (13) in (11), 

@0(V, t)/St = -- ~ F_K" (8/3V)/SK(V -- iKcr2t, 0) exp(-- iK" Vt -- �89 
K 

- i- j  dr ~ F - K "  (~/~V) [exp(--iK" V .  -- �89 
o K 

F~.  (~/~V) fi0(V -- iKa%-, t -- ~r) (16) 

Equation (16), like (13), is exact. The vast majority of the K in the two terms 
of this will have magnitudes about 2,}'1 and A -~, respectively, provided A+ and 2, 
are both much less then I. So, once a time much greater than A+/a and )~/~ has 
elapsed, 

@o(V, t)/Ot = Z F_K " (O/OV)f~dr exp ( - - iK"  V~ -- �89 ~) 
K r  

• FK" @/~V)/50(V --  iKcr%-, t -- ~-) (17) 

However, as in Section 8 of I, we can do better than this. The sums over K in 
(16) have just the form (1.50), and so, provided (1.52) is satisfied--that is, the 
time l/vo that a particle takes to cross the containing vessel is much greater 
than both )~i/(7 and h/cr-- 

/Iv 0 ~ t/(7, ~i/(7 ( 1 8 )  

(17) will be valid once 

t >~ ;~/Vo, ;~/Vo (19) 

Furthermore, provided ~ is sufficiently small that/5o changes little in a time 
of order A/Vo, 

(~/Vo/5o)[ @o/~tl ~ 1 (20) 

we may replace t - -  ~- by t in (17). We shall investigate the condition on 
that this requires in Section 6. Doing so, we obtain a closed Markovian 
master equation for/5 o : 

@o(V, t)/~t = �89 ~ Hx ~ K" (~/~V) f d~-[exp(--iK �9 V~- ~ K ~ ) ]  
K --co 

• K .  ~(V -- i~K'r, t) (21) 

where we have observed the effect of replacing -r by --~, and K by --K, in the 
summation. To avoid future ambiguity, we write 

~(V) : ~fi0(V)/~V (22) 
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Now, complete the square in T, that is, substitute 

y = e[~- + (iK �9 V/e~Ke)] (23) 

so that 

V - -  i~r2KT = V• -- i~Ky (24) 

where V. = V -- (V" K) K/K 2 is the perpendicular from V to K. Using Cauchy's 
theorem to move the contour of y integration back to the real axis, 

8tSo(V, t)/St = (1/2e) ~ HKH_K(K" 8/8V) exp(--(K �9 V)2/2eZK 2] 
K 

oo 

• f dy[exp(--K2y2/2)] K" ~(Va -- i~Ky, t) (25) 
--cO 

Using (14), we have the approximate form 

8t50(V, t)/St = [(2rr)l/~/2crK][1 + O(e~//~2)] ~ HKH_K(K " 8/8V) 
K 

• {exp[--(K �9 V)~/2(~2K~]} K"  if(V• t) (26) 

At first sight, both these equations seem bizarre, for they give 8/~0(V)/St 
in terms of the values offi0 at quite different points Vz. However, in Section 5, 
we shall show that they have all the properties we expect of a master equation 
for a weakly interacting system. We note here that for large negative times, 
the result of changing ~ to --oo in (16) or (17) is to give (21), (25), and (26) 
with the sign of the right-hand side reversed. And, indeed, this reversal of 
sign also comes about if we make the substitution V -+ --V, t -+ --t  in any 
of these equations. 

3. T H E  N O N - S P A T I A L L Y - H O M O G E N E O U S  C O M P O N E N T S  
OF ~, C O N S I S T E N C Y  OF T H E  A P P R O X I M A T I O N  (10) 

Let us now return to (15). First, consider the order of magnitude of fiK 
that it gives. An integration by parts suggests (and more detailed calculations, 
similar to those below, confirm) that the result of the time integration is 
just to give about (K �9 V) -~ times the average value of the integrand. The 
magnitude o f f  K is about Kh, where h is the magnitude of a typical component 
VXq.K 2 . The magnitude of 8~o/8V is about/~-~ times that of/50. So, 

j ISK/~0 ! ~-~ (llKvo) Kh(1/l~) : h/vofX (27) 

The magnitude of h is given by observing that 

f d3xl f d3x2 ] V(xl, x~)l 2 ~ dVo41 ~ (28) 
~ I  ~2  
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so that  

V~I.K~ V_K._K 2 ~ dVo 4 (29) 
K 1 , K  2 

and, using the results of  the discussion at  the end of  Section 4 of  I, 

h ~ ~Vo~(;~/1)~/~ (30) 

Later,  we shall justify assuming that  for  all t, ff ~ v0. So, provided 
e(~/l)8/2 ~ 1, the approx imat ion  (10) is definitely valid. 

In  (15), we cannot  replace t - -  ~- by t in the integrand unless we assume 
that/50 varies little over a t ime 2/~ (rather than  ~t/Vo in the derivation of  the 
master  equation).  Fur thermore ,  (15) cannot  be valid until a t ime much  longer 
than  A/a or 21/~ has elapsed. However ,  in Section 6, we shall prove  that  there 
exists a t ime % ,  the relaxation time, over which/5o tends to a limit. There  will 
therefore exist a shorter  time, r 1 , say, such that  once t > ~-1,/5 0 varies little 
over t ime A/a. Once a t ime larger than bo th  r~ and )tl/a has elapsed, we can 
write 

co 

fix(V, t) = - -  f d~'[exp(--iK �9 V~- - -  lcr2K27"2)] Fx"  8fio(V - -  i K a ~  -, t)/~V 
0 (31) 

We split this expression into two by contour  integrat ion (Fig. 1) 

/5~(V, t) = - - F  K �9 (lr: -}- JK) (32) 

where 

I~ : f d~[exp( - - iK �9 V~- - -  �89 ~(V - -  io~K'r, t) 
AB 

---- ( - - i /~){exp[- - (K �9 V)~/2a2K2]} 

( K . V ) / a / f  2 

• [ g(V - -  eKy,  t) exp(�89 - -  [(K" V)/(TK212}) dy (33) 
0 

im t~  

~= iK ,V  

Fig. 1. 

C ), 

/ 
I 

/ 
/ 

l 

)/ )Re 
Contour used in evaluating Eq. (3 I). 
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and 
( .  

Jg = | d~-[exp(--iK �9 V r  - -  �89 ~(V - -  icr2K'r, t) 
. )  BU 

= (1/c0{exp[--(K �9 V)2/Zc~2KZ]) 

dylexp( -   (vl - iK y, t) (34) 

We easily verify that  

i K "  V(--FK �9 Ix) + iK~r 2" (~/eV)(--Fx �9 Ix) + F x "  ~/5o/~V : 0 
(35) 

i K "  V(--FK �9 Jx)  + i K~r'~ " (~/~V)(--Fx �9 JK) : 0 

that  is, 

iK �9 V/SK + i ~ K  " (O/sx/~V) + FK " (~P0/~V) = 0 (36) 

This is in accord with (10); since/5K is determined f rom/50 ,  and  ~/5o/~t is o f  
order E 2, 6/sx/~t is o f  order  E z. In  part icular,  if/50 is a t ime-independent  
solution of  (25), the/SK for  K :/- 0 determined by (31), together  with /50 , 
fo rm a t ime-independent  solution of  (11) and (12). 

F r o m  (33), 1 K = - - 1  x . So, when (32) is substi tuted in (11), the I x terms 
cancel, leaving (25). 

Provided ~r//~ ~ 1, 

J~ = {exp[- - (K �9 V)2/2cr2K2]}(l/~rK)(~r/2) x/~ ~(VL, t) (37) 

and (25) reduces to (26). Equat ion  (37) still satisfies (35). Fo r  ] V �9 K IlK ~ ~x, 

I a ---- [~(V, O/iV" K][1 + O(cr//z) + O(crK/V" K)] (38) 

while f o r K ' V = 0 ,  I K = 0 .  

4. T H E  CASE a - -  0 

When ~ = 0, (13) becomes 

pK(V, t) = pK(V, 0 ) [exp( - - iK �9 Vt)] 

t 

- -  ( d~-[exp(--iK �9 V~')] F x "  8/50(V, t - -  r)/SV (39) 
, ]  

0 

As in Section 2.3, this expression oscillates indefinitely as t --> ~ ,  and may  
even be periodic. Substi tution in (11) gives an expression for  8/5o/~t with 
similar properties.  

82215II/2-5 
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The procedure used by most authors to obtain a closed equation for 
Po from (39) and (11) similar to that derived for t50 in Section 2 is that of 
Section 9 of I; to allow the side of the vessel containing the system to become 
infinite, so that p(X, V, t) is given by (I.54). We then arrive at 

~150(V, t)/~t =- :~Tr f d3NKF+(--K) �9 (c~/c~V) r V) 

• Ft(K) �9 (c2/cqV) po(V, t) (40) 

once i t I > )~x/vo, the sign being that of t. This equation was first derived, 
using perturbative techniques similar to those of sections 8 and 9 by 
Brout and Prigogine(3); it was obtained in this way by Zwanzig. 14~ 

We also have 

p+(K, V, t) = [ • 3(K" V) -- P(1/iK �9 V)] F*(K) �9 ~po(V, t)/~V (41) 

where the P denotes the Cauchy principal value function. This must be 
interpreted with care; any expression involving an integral over K of the 
left-hand side will tend to the corresponding integral of the right-hand side 
in a time of order (voko) -1, where k0 is a linear dimension of the volume of K 
integration, assuming P0 varies little over this time. 

We can easily show that the expressions we have obtained for 15K in 
Section 3 [and, therefore, our modified Brout-Prigogine equation (25)] may 
all be derived from the results of this section by integrating over V. Figure 2 
shows how I K and JK form approximations to the terms of (41). 

Our work gives a meaning to expressions involving generalized functions 

I 

\ 
\ 

\ \ \  

Fig. 2. Behavior of IK and JK- 

~u 
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by integrating over V rather than over K. Equations (25) and (40) are different 
realizations of the generalized function expression for Opo/~t: 

COo(V, t)/~t = rc ~ HKH_~(K" ~/~V)[g(K �9 V)] K"  0po(V, t)/~V (42) 
K 

Some properties of (40) are discussed by Prigogine. (s) In the next section, 
we shall discuss the corresponding properties of  (25), and we shall find it 
very convenient on occasion to consider the behavior of functionals of p 
(rather than tS), using (42). It will always be possible to obtain the same results 
more tediously by coupling (25) with the inversion formula (I.39). 

5. PROPERTIES OF THE MASTER E Q U A T I O N  (25). 
CONSISTENCY OF A P P R O X I M A T I O N S  (14) A N D  (20) 

Write (25) as 

where 

~Po/~t = JPo (43) 

J,,5 o = ( 1 / 2 e ) ~  HKH_K(K" ~/aV){exp[--(K'V)2/2e2K2]} 
K 

oo 

• f dy[exp(--�89 K .  ~(V• -- jerky) 
- - 0 0  

(44) 

(a) The significance of the peculiar form V. = V -- (V �9 K) K/K 2 in the 
expression for J becomes clear if we observe that any funct ionf  (V) depending 
on V through V2/2 only, f (V) = c~(V2/2), say, is such that 

Jf(V)  = (1/2a) ~ HKH_K(K" ~/SV){exp [-- (K �9 V)~/Za2K2]} 
K 

oo 

• ( dy[exp(--lK2y2)] K" (V• -- iKay) ~'[(V• -- iKay) 2] 
,d 

(45) 

But K �9 Vz = 0, and (V• -- iK~ry) 2 = V• 2 -- K2~y  2. The integrand in (45) 
is thus an odd function of y, and so the integral is zero. Any suchf(V)  is a 
time-independent solution of (43). 

(b) If  we write u = (V ' K)/K, V = V• § (uK/K), then 

f d~NV ~(V2/2) JtS0 (46) 

is the sum of terms which are integrals of odd functions of u, and so vanish, 
for any function o~. 
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In particular, total probability is conserved by (43), and total energy 
to order e ~. 

(c) However, our operator J is not exactly self-adjoint. With a similar 
notation to (46), 

f daNV ill(V) Jfi~(V) 
co 09 

K - -oo  - - a o  

• {exp[--(1/2a~)(u ~ -l- u'2)]} K" ~(u, V• K"  ~.2(--iu', V• 

= [1 + O((r/ix) ~] f d~NVI52(V) Jt~z(V) (47) 

expanding gz and g~ about u and u' = 0 in a Taylor series. Provided (14) is 
valid, we can regard J as self-adjoint. 

(d) To show that (14) is self-consistent, we show that the equation (26) 
obtained by using it is such that local minima of fi0(V) tend to increase with 
time, and local maxima to decrease. [Incidentally, we may easily prove that 
(25) also has the properties (a)-(c) above.] 

Since V• and u are independent components of V, 

eg(v., t ) / e .  = o 

so that (26) may be written 

O/5o(V, t)/3t = -- ~ [(27r)l/2/cr a] HxH_xu[exp(--u~/2r K" g(V• t) 
K 

(48) 

Writing V• = V -- u K / K  and expanding the last term as a Taylor series, we 
find that 

= K ( 2 7 r ) l / ~ H x H _ ~ ( e x p - - ~ )  
tx ,' J ~t K 2~3 

So 

~2po(V) • [u ~fio(V) u~ ] (49) 
~u ~u ~u 

~/5o _ 0, e~po(V) positive definite --~ Ofi0(V) > 0, etc. 
OV ~V ~V at 

This must in the long term cause IX to increase. If  (14) is true initially, it will 
remain so. 
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(e) In order to discuss the Markovian approximation (20), we must 
estimate the magnitude of J/5o �9 In the sum over K in (44), the only K that will 
contribute significantly are those such that 

i V  " K/~KI ~ 1 (50) 

The proportion of possible K satisfying this condition is about r (we ignore 
the case of l V j very small, of order or). From (29), 

HKH_K ~ (d) 2 Vo 4 (51) 
K 

and so the magnitude of J/50 is of order 

(1/~)(,')2Vo'O-1/~)(~/Vo)(a-1/~)(1/;~-9/50 = [( , ' )2 v0" /~a] /50  

Initially,/~ ~ Vo, and we have shown that/~ increases with t. So [ O/5o/Ot [ is 
always less than ~-oZ/50, where 

% = A/(,') 2 Vo (52) 

Thus if E' ~ 1, (20) will always be valid. Indeed, if E'(cr/Vo)-Z/z ~ 1, the 
expressions for/sx that we have derived in Section 3 will be valid once t > A/or 
and Advt. 

6. T H E  E V O L U T I O N  OF Po 

As we have already seen, once a time of orler h/Vo has elapsed, the effect 
on/5 of initial conditions on/5 K for K =~ 0 will have disappeared;/5 o will have 
changed very little over this time provided )z ~ A and E' ~ 1. Thus the 
behavior of/50 and/SK for large positive times will be given within our approxi- 
mation by assuming that, from time zero,/50 has evolved according to (25), 
while the/5 K for K ~ 0 are obtained by substituting this/50 in (32) (how large 
these times have to be we have already discussed in Section 3). These are the 
"post-initial conditions" of Balescu391 

In order to prove that/50 tends to a limit as t --,- 0% we adopt the usual 
approach of finding a functional of/5 o , 

I(t) = f d3NV f(/5o(V, t)) (53) 

that varies monotonically with time, is bounded, and is constant only when 
/5o is a time-independent solution of (25). 

Owing to the non-self-adjoint nature of J, we have to search a little harder 
than usual. While (42) is meaningless on its own, it may be used to consider 
the behavior of functionals of P0 �9 For example, set 

Q(t) = �89 f p02(V, t) d3NV (54) 



70 C.J. Hyerscough 

where P0 is defined from/5 o by (I.39) and t50 satisfies (25). Then, either using 
(42) or, more tediously, 0.39) and (25), 

dQ/dt = --Tr ~ HKH-K f daNV [3(K. V)] (K" ~po(V, t)J~V) ~ (55) 
K 

So, dQ/dt < 0, and dQ/dt = 0 only when 

K .  V = 0, H x ~ 0 --+ K "  @0(V,  t)/~V =- 0 (56) 

It is a consequence of the proof  of Fermi's theorem (see I, Section 5) 
that (56) holding for all K implies that P0 depends on V through V2/2 only. 

Since Q(t) is bounded below, it must tend to a limiting value, at which 
dQ/dt = 0: Since Q is a continuous functional of p0, this implies that P0 as 
defined by (I.39) from/50 satisfying (25) must tend to a limit isotropic in V 
as t --~ ~ .  The term/50 must do so too, in a time of order ~o �9 We call % 
the relaxation time. 

PK will have reached its limit once the larger of times ?,dcr and % has 
elapsed; we may then show that the limit of p is equal to the result 
of smoothing the phase average of p(X, V, 0). 

Exactly similarly, we may consider negative times. Once t < --2t/Vo and 
-AdVo, the evolution of"/50 is according to (25) with the sign reversed. Now, 
dQ/dt > 0; as t ~ -- o% iS0 tends to the same limit. 

7. A N  E Q U A T I O N  FOR THE ONE-PARTICLE REDUCED 
DENSITY F U N C T I O N  

As we have already observed in Section 10 of I, we are often interested 
only in the behavior of the reduced probability density functionf~ for small s, 
in particular, for s = I. We now obtain an equation for the evolution off~ 
once a large, positive time has elapsed. The result of integrating (26) over all 
velocity variables except vx is (with the notation of Section 4 of I) 

where 

Go(V~, t) 
~t 

= ( N - -  1) f daY2 (2~r) 1/~ Vk21.k2kl " ~ (r(kl ~ + k22) ~/2 
k~. ,k 2 

x [exp -- ( k l ~ j ~ _ ~ _ ~  ] "  vl + ks " v2) ~ 

(vl " k l  + v2 " k~) (v~" kl + v~ " k~) k l ,  v~ --  
X ,h2 V 1 -  k l  2_~_k2 2 k l  2_~ k2 2 k2, t] (57) 

~dvl,  v~, t) = kl �9 (G0/evi) + ks- (Go/ev~) (58) 
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fzo andfz0 are the spatially homogeneous components of the reduced densities 
f l  and f2.  

Owing to the presence of an integration over v2, it causes only a propor- 
tional error of  order (~//z) 2, where/z is, as before, the scale of  variation of  
f~o and f20 with vz and v2, to replace 

(2~r)1/'~ [exp -- (kl " vl + k2 " Vz) 2 
(1{19~ _}_ k22)1/2o. ~ -~2~)~-~-k-2~ ] by ~-8(kz �9 v~ + k2" vz) 

(59) 

This error is the same as we made in using (26) instead of (25). So (57) becomes 

~f~o/at = ( N -  1) Z V~,k~ 7r 
kl ,k  2 

• f d~v2 Dkz,k2[~(kl �9 v 1 -[-- k~" v2)] Dkz,k2f20(Vl, V~, t) (60) 

where 
Dkz,ko. : k I �9 (c~/C~Vl) -+ k 2 "  (~/c2v2) (61) 

This is of a standard form [cf. (4.3.1) of Prigogine(S)], allowing for the more 
complicated structure of V introduced by the periodic conditions. 

If  we now assume that all the particles are uncorrelated, as in (I.61), 

f2o(Vl, v2, t) = Lo(V1 , t)flo(v~, t) (62) 

and (60) becomes 

9rio(V1 t)/~t ( N -  1)rr Z 2 f . . , : V[z ,k ,  d3v2 Dkvk2[3(kl  Vz -[- k2 vz)] 
k l ,k  2 

X D k l , k ~ o ( u  , t )L0(u  , t )  (63) 

which is very similar to the Landau or "pseudo-Boltzmann" equation 
[(4.3.4) of Prigogine(81]. As there, we can prove much more about the behavior 
off~o than (25) gives us, for 

(a/dt) fflo(Vz, t) logflo(Vz, t) d"vz 

= ( N -  1)Tr 2 V~I,k, f d3vl f d~v2 [logfao(V0] Dkl,k~ 
kl ,k  2 

X [3(k1 " vl + k2" %)] Dk.k~fl0(V0J~0(V2) 

= �89 -- 1)~r E V~l.k~ f d~vl f d3v2 {log[fao(Va)fao(V2)]} 
kl ,k  2 

• Dkl.k~[3(kl "Vl + k~" v~)] Dkl.k~flo(Vl)f~o(V2) 
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[by the symmetry of the integrand in vl and v2] 

= --�89 1)Tr k~,k22 V~l.k2fd3vlf dav2(~(kl"vl@ke'v2)Zo(~)-fao~2) 

• [Dk~,k~f~o(V~)f~o(Va)] ~ < 0 (64) 

This result is known as an H-theorem. We note the use we made of the 
logarithmic integrand; it is the only functional of f~o for which the proof 
works, while the proof that dQ/dt < 0 in Section 6 works for many 
functionals Q of/5 (including ~ p log p). 

From (61), we can prove that fk 0 tends to a Maxwellian form as t --~ oe 
(or, once again, as t--~ --oo). The reason why this happens is that our 
assumption of no velocity correlations between the particles is only self- 
consistent when the system is large. (s) In this case, as we have already pointed 
out in Section 10 of I, the single-particle reduced density corresponding to a 
time-independent solution of the LiouviUe equation must be Maxwellian. 

We can also obtain (63) from the BBGKY hierarchy (I.59) following 
the work of Frieman. 19~ 

8. T H E  P E R T U R B A T I O N  SERIES FOR 

We now discuss the general problem of the evolution of the spatial 
Fourier components of/5 as given by the set of equations (5)-(9), without 
restriction on the magnitude of the parameter E. 

Equations (6) and (8) give, as (I.48), 

fi0,Ko(V, l )  : f iKo(V - -  iKo~2t, 0) exp(--iKo �9 Vt - -  �89 ) (65) 

while in general 

P",Ko(V't) = ( -1)'~ fod% fo d~'z "'" rod% Z [exp(--iKo" V%)] 
K 1, . . . , K  n 

"rO+rl+...+'r,n=t 

• F-(Kz-Ko) " (a/0V)[exp(--iK1 �9 V~-l) ] F--(K2--K1) " ~/cnV 

• "'" [exp(--/Kn_~ �9 Vrl) ] F-(K~-Kn_9 " (~/0V)[exp(--iKn. V%)] 

• fiK~(v - i~(Ko~-o + "" + K . . ~ ) )  

• exp[--�89 + "'" + K~rn) 2] (66) 

In the next section, we show that the resummation techniques of the 
Brussels school (Prigogine and Balescu, I1~ Prigogine and R~sibois, (m 
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Prigogine, (12) Chapter 11) can be used on the series (5). The idea behind their 
work is a generalization of that of the above sections: they attempt to show 
that eventually the spatially homogeneous component p0(V, t) of p evolves 
with time according to a closed equation, while the other components Px are 
determined from current and previous values of Po. In particular, we shall 
find an additional condition for the weak interaction calculation--we have 
shown so far only that our framework of approximations (10) and (20) is 
self-consistent. 

We refer to Prigogine and Balescu, (1~ Prigogine, (8) Chapter 7, or 
Balescu, (a~) Chapter 1 for an explanation of the method by which any term 
of the perturbation series for p may be represented by a "diagram." The 
representation itself is still perfectly valid when applied to the perturbation 
series for iS, since the only assumption made is that HK is of the form (I.2) 
(corresponding to two-particle interactions). This implies that if K~ and 
Ki+z are consecutive wave vectors in (66), for the term to be nonzero, only 
two of their N 3-components can differ, 

ki ,  z - -  k i+ l ,~  (l ~ p, q) ( 6 7 )  

say. However, the law of conservation of wave vectors 

ki,~ + ki.q = ki+l,~ + ki+a.q (68) 

being a consequence of (I.16), is not true; the best we can say is that when 

k~.~ + k~,~ ---- (k~+z,~ + k~+x,q)[1 + 0(,~/I)] (69) 

Here, k' is some vector obtained from k by changing the signs of one or more 
components. This is the nearest we can get to (68) in veiw of the requirements 
0.18). 

Furthermore, since the Laplace transform of a particular term is no 
longer an algebraic product of operators, we can no longer work out the 
behavior of a particular diagram from the behavior of its vertices. We shall 
demonstrate this first for the weak-interaction case in section 10. 

9. THE PRIGOGINE-RI~SIBOIS RESUMMATION 

We write 

G(V, t) = ~ egGs(V, t) 
s=2 

(70) 
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where the operator Gs(V, t) is defined by 

G~(V, t~(V) = (--1) ~ _fod~l ' "  _fo dr Z F_x~. (~p/~V) 
K 1 ..... Xs_l if:0 

~l+...+~a_l=~ 

X [exp(--iK 1 " V ' r l ) ] F _ ( K z _ K a  ) " (a/aV)[exp(--iK~- Vr2) ] "'" Fx,_, �9 (8/8V) 

X f ( v  -- ia2(Kl"r I -}- "'" -}- Ks_l~-s_l) ) 

• exp[--�89 -}-'-' + Ks_1%_1) ~] (71) 

for any analytic function f(V) derivable from an analytic function f (V)  by 
means of our smoothing proceSs. G, is a linear integrodifferential functional 
operator acting on f when cr # 0, rather than just a differential operator, 
as it is when cr = 0. 

Similarly, we define an operator Dx(V, t) for K # 0 by 

Dx(V, t) = ~ ,~D~x(V, t) (72) 
s=l 

Dsx(V,t)f(V) = ( - l y  fod~l"'" fod~s Z 
K 1 ..... Ks_l~0 

7'1+...+'gs~ t 

F-xz '  (~/6V) 

• [exp(--iK1 �9 V ' r l )  ] F_(K2_K1 ) " (O/~V) 

• [exp(--iK2 �9 Vr2) ] " ' "  F _ ( x _ x s _ l  ) " ( ~ / ~ V )  

• [exp(--iK �9 V%)]f(V -- ia~(K~'q + ... + K%)) 

X exp[--la2(Kl~-i + "" + K%) ~] (73) 

Every term of the integrand of (66) with K o = 0 can be expressed 
uniquely as a product of terms of the expressions G and D x , just as in the 
theory of Prigogine and R6sibois. Thus 

po(V, t ) =  2 0  fo dtO fo dT1 fo dtl fo dT2 "'" fo dTn fo dtn G(V,  "/'1) 

tO+71+tl+'r2+,..-b~nqtn=t 

�9 o)+ i fo ,O fo -. fo - ' 7~=0 
t0+71+...+*n+tn+'r'=t 

G(V ,  T1) "'" G(V,  Tn) E D x ( V ,  r ' )  f ix(V, 01 (74) 
K:#O 
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This gives us the integral equation 

 0(v, t) =  o(v, o) + Z 
K ~ 0  0 

to+'rl+tl~t 

equivalent to the differential equation 

t)/ t -- A(v, t) + fo 

where 

d~-' DK(V, ~-') tSK(V, 0) 

dq G(V, T1)/5o(V, q) (75) 

G(~-) tS0(V, t -- -r) d~ (76) 

A(V, t) = ~ DK(V, t) fi~(V, 0) (77) 
K ~ : 0  

All this is simply formal manipulation of the series solution, and is exactly 
true. If, however, we can now prove that 

A(V, t) -7 0; tl+~G(V, t)f(V) -+ 0 (3 > 0) (78) 

as ! t] ~ ~ ,  for any reasonably well-behaved f(V), then for large, positive 
times, we have, as promised, a closed equation for the evolution of/5o 

t)/~t = f G(V, .r) tS0(V, t -- r) d~- (79a) ~/5o(V, 
0 

provided that tSo remains reasonably well-behaved. Similarly, for large, 
negative times, 

0 

t)/at = -- f G(V, ~-)/5o(V, t -- ~-) d~- (79b) ~tS0(V, 
~ J  - - c o  

We observe that so far our work has made no mention of whether 
@ 0 or a = 0; (79a) or (79b) will be valid in either case provided (77) 

holds. The resummation leading to (76) was first performed, and the condi- 
tions (78) first explicitly stated, for cr = 0 in Refs. 10 and 11; we shall always 
refer to (79) as the Prigogine--R6sibois master equation. 

In just the same way, we can carry over the work on inhomogeneous 
components of Prigogine and Henin (1~) (see also Prigogine, (s) Chapter 11). 
The tSK for K @ 0 can be split into created and propagated parts. We would 
like to prove that the propagated part tends to zero. 

10. THE  W E A K - I N T E R A C T I O N  CASE 

The results of Sections 2 and 3 may easily be derived from our general 
equations above. As there, we assume that the parameter e is very small; 
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G2 G2 G2 ~" ~o(_v o) 

l ~-K(v,o) 

Fig. 3. Diagrams summed in weak-interaction approximation. 

if we retain only the lowest powers of e in (70) and (72), (78) is satisfied; 
(79a) gives (21). Expressions for the inhomogeneous components may also 
be derived, and give the results of Section 3. 

In this approximation, we are of course keeping only terms in which 
alternate K~ are zero, that is, of the diagrammatic form shown (Fig. 3), in 
the expansion of/5o. These are the same terms as are kept in the derivation of 
(40) from the perturbation series for 032,8) 

There, however, the time dependence of these diagrams is obtained by 
convoluting the separate components. If  we assume the spatial Fourier 
spectrum continuous, we can show that in the weak-interaction case, each 
diagonal fragment contributes a factor eat, while creation fragments and 
destruction fragments merely add constant operators proportional to e. That 
is, the terms represented by the above diagrams have as many powers of t in 
them as there are rings, and as many powers of e in them as there are vertices. 

When (r =/= 0, the behavior of compound terms is more complicated. 
For example, 

K z 0 0 0 

• [exp(--iK~ �9 V~'I -- �89 FK~" (8/~V)/5o(V -- icr2Kl~'~, 0) 

(80) 
It is easily seen that this expression equals tJ/5o(V, 0) to within constant and 
decaying terms, where J was defined in (44). The behavior of the 
corresponding term in the expansion of p0, with a continuous spectrum of K, 
as analyzed in the above references, is essentially the same. However, the 
next term in the expansion is 

Z Yo i (e/eV)[exp(--iK " W )IFI, . (e/eV) 
K1,K 3 " 0 

'ro+...+'r4~t 

X F_K~" (~/~V)[exp(--ig~. V~-3) ] Fx~" (0/eV)/5o(V -- ie2(K~% -b K3r~)) 

• exp[--�89 + K3%) ~] (81) 

Unless 

Kx + ~Ka = 0 (82) 
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for some (rational) ~ < 0, I KIT1-k K373 I--~ oo as T1, T~-+ Go. The r 1 
and % integrations may then be regarded as independent, and the result is 
proportional to t 2 (plus lower-order terms). However, if (82) is true, substitute 
~-a' = ~'3 - -  c~'1 ; then ,  I K~T~ § K3T~] = I K3~'3' I ~ oe as TZ, r~ -+ 00 if 
r z' remains bounded. The integral turns out to involve powers of t higher 
than the second. 

We note that these effects show themselves in (25); the perturbative 
solution of this equation is just 

t~0(v, t) = ~ (t./n !) J .  t~o(v, o) (83) 
n = O  

(this, of course, we only expect to represent tSo for large, positive t). Though 
the n = 2 term here seems to be of order t 2, in fact, 

oo oo 

J~tS0(V, 0 ) =  ~ Z ( d'rzf dz3F-sz'(O/eV)[exp(--iKl"VZa)] 
K z , K  3 ' - - ~  - - ~  

• FKI" (~/0V)F-s3" (~/~V)[exp(--iK3 " V~'3)] FK~" (~/~V) 

tSo(V - i~2(Kl~'z + K8%)) exp[-�89 + K3~-3)Zl 
(84) 

When (82) is true, this integral diverges; the approximation (84) for the fourth- 
order term is invalid; the term is of higher order in t. 

Despite the presence of these anomalous terms in our series for/50, we 
have shown that the corresponding equation (25) does have all  the properties 
we expect of it. This reduces our pessimism when we tackle the problem of 
investigating the terms of the series (65) and (66) that we have omitted in the 
weak-interaction approximation, and find similar difficulties occurring when 
the wave vectors K1 in a term are parallel or linearly dependent. 

11. S O H E  SECULAR TERMS IN  G 

We now attempt to discuss the effects of higher powers of 4, representing 
repeated collisions or multiple-body interactions. Prigogine and R6sibois (lz~ 
discuss the ~ = 0 infinite system case using Laplace transforms and complex 
variable theory to discuss higher terms in the expansion (70) of G. They make 
more plausible, though they do not prove, the assertion that each higher term 
G3, G4 ..... of G separately satisfies (78), and so that (79) may be extended to 
al l  orders in the interaction strength. A recent paper by de Pazzis a4~ considers 
this matter in more detail. 
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When ~r J= 0, however,  Laplace t ransforms are not  very useful, as 
remarked  before. Fo r  example,  

Gz(V, 0 f ( V )  = --~0- d~-i ~fo dr2 • F-K1" (~/gV)[exp(-- iK1" V~'z)] 
K1,K~0 

.rl ,a- ~-2~ t 

• F_(K~_K, ) �9 (0 /~V)[exp(- - iKs-  V~'2)] 

x FK~" ( e / ~ V ) f ( v  - -  icrZ(Kl'rl + Ks~'2)) 

• exp[--�89 + K~r2) ~] (85) 

Now,  if T 1 + ~'~ = t and Ks =/= K1,  

(K~rl + KsTs) 2 = [ K l t  @ (Ks - -  K1) T2] s 

= (Ke - -  K~)~{~'2 + [Kx " (Ks - -  K1)t/(Ks - -  K02]} ~ 

+ tZ{K1 s - -  [(Kx " (K2 --  Kz))2/(Ks - -  K1)S]} (86) 

It  follows that  all terms of  (85) except those in which 

K ~ - - ~ K  1 : 0 (87) 

for  some (rational) ~ =# 1, must  have magni tude less than  various powers  of  

t exp(--�89 s - -  [(K1 �9 (K2 - -  K1))2/(K2 - -  K1)2]}) 

Thus  a lmost  all these terms will tend to zero in a t ime of  order  A/~r, and 
provided (I.52) holds, their sum is very likely to tend to zero in a t ime of  order 
~tlvo. 
But consider the te rm 

-- fo d~-I f0 d~'~ F-K," (8/8V) F-K,(~-I) " [(8/8V) + iK1"I] 

TI +T2: t 

X { e x p [ - - i K  1 " V(T I ~- 0~T2)]} FaK 1 " ( ~ / ~ V ) y ( V  - -  i(y2Kl(Tl -~ ~T2) ) 

• exp[--�89162 + ~-2) s] (88) 

Substituting 

T 1 -~ 0~T 2 = 7'  (89) 

and changing the variable of  integrat ion f rom rl  to r ' ,  we have 

1 ~ 3 F ~ iKl (a t  - -  "/) 
0~ - -1  f~d~"F_K~ " ~ V  --Kl(c~-l)" [ ~ V - -  -q- ~ - - -  ] -] 

0 - 
• [exp(-iK~ �9 V~-')] F~K~" - ~ - f ( V  - i~Kx~-') exp[-�89 s] 

(90) 
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I f~  < 0, and t > 1/~K,  the limits of integration may be replaced by -- co and 
oe; assumingf varies slowly with V, this gives us some constant terms plus 

c~t~/27r F-K~" ~ F_K~,~_~,'iK~ [exp (K~ �9 V) 2 ] F~I~ �9 g(V• 

(91) 

Thus Ga(V, t)f(V), far from decreasing, contains terms which increase 
linearly with t! The integral expression (77) for ~o/Ot  will contain terms of 
order t2; it seems unlikely that we can approximate it by (78). However, as the 
size of the system increases, the time taken for these secular terms in G~ to 
have an appreciable effect becomes longer and longer, as we shall now show. 

The total number of possible K~, K2 in (85) is equal to the number of 
K1, K2 we can find such that 

F_Kz~0 , F K ~ 0  , F+(Kz_Ka ) : / : 0  (92) 

Using 0.22) we are restricted to terms whose diagrammatic representation 
is one of the two types shown in Fig. 4, that is, in the first type, only thepth and 
qth 3-components of either K1 or Ks are nonzero, while in the second type, 
the p and q components of K z , and the j and p components of K~, are 
nonzero. Assuming that l >~ ;~, the total number of terms of the first type is 
about 

�89 1)(l/A) 6 (93) 

while the total number of the second type is about 

~ N ( N  --  1 ) ( N -  2)(//A) a (94) 

(In the first type, kz, and k.~, may differ; in the second type, they must be the 
same.) Since the magnitudes of almost all terms apart from the secular ones 
are about the same, the major contribution to the decaying part of G~ will 
come from the class of diagrams with more representatives. Which class this 
is depends on the magnitude of 

no = N(A/I) 3 (95) 

the average number of particles in a sphere of radius A. When this is small, 
as for a ratified gas with short-range interactions, the first type predominates 

q q p 

Fig. 4. Two types of third-order term. 
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(two-body interactions, leading to an equation of Boltzmann type); when it 
is large, as for a plasma, the second type predominates (Balescu~l~l). 

Terms in which K1 and K2 are parallel occur only among the first type. 
There are about I/2` possible K2 for each of the �89 -- 1)(l/2`) 3 possible K1 : 

�89 1)(1/2,) 4 (96) 

secular terms in all. 
The effect of the secular terms in (76) will be negligible as long as 

f ]  G3.Nsc(V, r ) f ( V ) d r  1~ So G3,sEc(V, ~')f(V)dr I (97) 

where the expression on the left contains all the nonsecular terms, and the 
expression on the right all the secular terms, in G3. Write Q as the typical 
magnitude of the expressions 

F_K, �9 (eleV)F-(K,-K1) " (eleV)F~,. (eleV)f(V) (98) 

Then the magnitude of the left-hand side of (97) will be about 

� 8 9  1)(//2`) ~ a(2`/vo) 2, no < 1 
(99) 

~N(N -- 1)(N -- 2) Q(2`lvo)2(ll2`) z, no >~ 1 

[only a proportion (e/Vo) s of the terms in this sum, satisfying 

i V  �9 Kx' tlcrKx' ~ 1 and IV �9 K2' IleKs' ~ 1, 

where KI' and Ks' are certain linear combinations of K~ and Ks,  will be 
nonzero; these will have magnitude Q/(eKo) 2, where K o ~ 1/2`]. 

Integrating (91) with respect to time just adds a factor t; thus the 
magnitude of the right-hand side of (97) is about 

�89 - -  1)(//2`) 4 t2Qt~2`12`Vo (100) 

[again, only a proportion cr/v o of the terms contribute, but the magnitude of 
each of these is Qt~2`/~r, since, comparing (91) with (98), a ~/OV is replaced by 
a K1/KI ]. The ratio of (100) to (99) is about (tvo/l) s tz/vo or (1/no)(tvo/l) i~/Vo. 
Since, as before,/~ < v0, secular terms will be negligible as long as 

tvolt < 1 (101) 
i.e., provided a particle moving with the typical speed Vo has not yet succeeded 
in crossing the containing vessel. 

It is easy to extend this proof to consider secular terms in G, of the form 
represented by the diagram shown in Fig. 5 with all intermediate wave 
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Fig. 5. Example of a general secular term. 

vectors parallel. Though these increase with t like t 2~-5, they will have 
negligible effect compared to the nonsecular terms in G~. 

However, the terms of G~ (occurring for s > 4) in which not all the 
K1 .... , K,_a are parallel, but between which there does exist some linear 
relation, are more troublesome. We can show that these secular terms are 
only negligible in effect compared to the nonsecular terms of  the same order 
as long as 

(A/1)2(tVo/A) ~-~ ~ 1 (102) 

As s increases, the time required for this condition to be violated becomes 
shorter and shorter. 

It is clear, then, that we cannot formulate a general criterion for the 
neglect of secular terms and the validity of (24). Even a condition for the 
weak-interaction approximation eludes us; for this, we would need 

f~o G~,sEc(V, t ' ) f ( V ) d t ' l ~ f ( V ) / ' r  o (103) 

for all s > 2, and t up to the relaxation time % ---- A/(r ~ v o . This is certainly 
true for terms of the form (102) provided roVo/1 ~ 1 -- tS0 reaches its limit in 
a time much shorter than it takes a particle to cross the containing vessel. 
However, (103) would be true only if, roughly speaking 

[Vo(d)~+~/A](~/l)2(tvdA) '-~ ~ (1/~0) (t < r0) 

i.e., 

(A/l)~[l/(d) "-2] ~ 1 (104) 

which will always break down for large enough s. 

12. C O N C L U S I O N  

We have seen how a self-consistent theory of weakly interacting systems 
of  finite size may be obtained either by "quasilinear" approximation or by 
perturbation theory. This equation has all the properties we would expect, 
and is indeed the Brout-Prigogine equation in another form. However, when 
we attempt to go to higher interaction strengths, difficulties arise owing to a 
finite proportion of  sets of  nonzero wave vectors being linearly dependent. 
In particular, when strings of consecutive parallel wave vectors occur, the 
behavior of  terms of  the series is quite different from that normally 
encountered. A physical explanation of these anomalous terms may be 

822/5/I]2-6 
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"resonant"  particles colliding again and again on successive circuits of  the 
toroidal/"-space. 

We are presently investigating methods of incorporating these terms. 
One suspects their collective effect is of  little importance; suppose, for 
example, we have but one degree of f reedom--one  particle moving in a 
potential well. A series solution for p can be written down, and every term 
will similar to those analyzed in the last section. In fact, rather than being a 
series in powers of  ~ t  to highest order, (5) is a series in powers of Et 2. As we 
would then expect, a physical analysis of  the problem (considering the period 
of oscillation of a particle in the well) shows that t5 will reach its limiting value 
in a time of order E-l/2 [rather than % ~ ~-~ of (52)]. In other words, it should 
be possible in the general expansion (5) to sum over classes of these awkward 
terms to obtain something well-behaved. This would be a further, or possibly 
an alternative, resummation of the series. 

All this suggests that our work can be developed further to cover wider 
classes of  finite systems. Even our work so far has, however, made it clear that 
the infinite limit is not a necessary part  of  the derivation of several important  
results of  nonequilibrium statistical mechanics. As remarked in the intro- 
duction to I, it is not desirable that it should be necessary. 
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